Lecture 17: Concatenation Codes

Concatenation Codes

э

- A set of codes $\{C^{(1)}, C^{(2)}, \dots, C^{(T)}\}$ is called an ensemble
- Wozencraft's Ensemble is a set of $T = 2^t 1$ [2t, t, d] codes such that a "large" fraction of them have a "large distance"
- Let $\mathbb{F} = \mathbb{GF}(2^t)$
- Let $C^{(\alpha)}$ be the code that maps $x \mapsto (x, \alpha x)$, where $\alpha, x \in \mathbb{F}$ and $\alpha \neq 0$
- For any α ∈ 𝔽*, note that the code C^(α) is a [2t, t]₂ code (here we interchangeable interpret the field elements as t-bit strings)

・ロト ・ 日本・ ・ 日本・

Claim

For any $0^{2t} \neq y \in \{0,1\}^{2t}$, there exists at most one $\alpha \in \mathbb{F}^*$ such that $y \in C^{(\alpha)}$.

Proof.

- Suppose there are two distinct $\alpha, \beta \in \mathbb{F}^*$, such that $y \in C^{(\alpha)}$ and $y \in C^{(\beta)}$
- Suppose $y = (y_1, y_2)$
- This implies $x = y_1$ and $y_2 = \alpha x = \beta x$, that implies $\alpha = \beta$ (a contradiction)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Claim

At most $Vol_2(d-1,2t) - 1$ codes in the Wozencraft Ensemble have distance < d.

Proof.

- Consider any non-zero $y \in \mathsf{Ball}_2(d-1,2t) \setminus \{0^{2t}\}$
- There exists at most one code in the Wozencraft Ensemble that contains *y*
- So, there are at most $Vol_2(d-1,2t) 1$ codes in the Wozencraft Ensemble have distance < d

Claim

At least $2^t - \text{Vol}_2(d - 1, 2t) \approx 2^t - 2^{h_2(d/2t) \cdot 2t}$ codes in the Wozencraft Ensemble have distant $\geq d$.

Proof.

• There are $2^t - 1$ codes in the ensemble and the previous claim, the result follows

Recall: GV-Bound

• GV-Bound says that there is an $[n, k, d]_2$ code such that

$$2^k \geqslant \frac{2^n}{\operatorname{Vol}_2(d,n)} \approx 2^{n(1-h_2(d/n))}$$

Equivalently

$$\frac{k}{n} \ge 1 - h_2\left(\frac{d}{n}\right)$$

- Let Rate R = k/n and relative distance $\delta = d/n$
- Then, GV-bound says that there exists a binary linear code such that

$$R \geqslant 1 - h_2(\delta)$$

- Can we construct one code that (nearly) achieves this?
 - We will use Reed-Solomon Codes and Wozencraft Ensemble to (nearly) achieve this bound

・ロト ・同ト ・注ト ・注ト

- Let $\mathbb{F} = \mathbb{GF}(2^t)$ and $q = |\mathbb{F}|$
- For every k, there exists a $[2^t 1, k, 2^t k]_q$ code
 - Suppose the input message is $(m_0, \ldots, m_{k-1}) \in \mathbb{F}^k$
 - Interpret this input message as a polynomial $M(X) = \sum_{i=0}^{k-1} m_i X^i$
 - Evaluate the concatenation of M(X), for all $X \in \mathbb{F}^*$

・ 同 ト ・ ヨ ト ・ ヨ ト

Concatenation Code

- Let $C^{(\text{out})} = [N, K, D]_Q$ code (called, outer code)
- Let $C^{(in)} = [n, k, d]_q$ code (called, inner code)
- Such that $q^k = Q$
- For example, consider $C^{(\text{out})}$ as the $[2^t 1, k, 2^t k]_q$ Reed Solomon code in the previous slide and any $C^{(\text{in})} = [n, t, d]_2$ code
- The *concatenation* of $C^{(out)}$ and $C^{(in)}$ is the code where we encode each *Q*-ary alphabet of the codeword in $C^{(out)}$ by the $C^{(in)}$ code
- Continuing the example, the concatenation of the Reed-Solon code with the $C^{(in)}$ is the following code. Evaluate the polynomial M(X) at each $X \in \mathbb{F}^*$ and encode M(X) using $C^{(in)}$

- The concatenation code C = C^(out) C⁽ⁱⁿ⁾ is an [Nn, Kk]_q code (Prove this)
- The distance of C is at least Dd (Prove this)
- Therefore, $C = C^{(out)} \circ C^{(in)}$ is an $[Nn, Kk, \ge Dd]_q$ code

- 4 目 ト - 4 日 ト - 4 日 ト

• Continuing the example, the concatenation of the Reed-Solomon with any $C^{(in)} = [n, t, d]_2$ is an $[(2^t - 1)n, kt, (2^t - k)d]_2$ code

・ 同 ト ・ ヨ ト ・ ヨ ト

- The inner code used to encode each Q-ary alphabet on the outer-codeword can be different. As long as they are an [n, t, d]_q code, the resultant concatenation is an [Nn, Kk, ≥ Dd]_q code
- Suppose all but Λ of the inner codes have distance d. Then, the resultant concatenation is an [Nn, Kk, ≥ (D − Λ)d]_q code

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Concatenation of Reed-Solomon with Wozencraft Ensemble

- Recall that each code in the Wozencraft Ensemble is a [2t, t]₂ code and all except Vol₂(d − 1, n) − 1 of the codes have distance ≥ d
- Recall that the Reed-Solomon codeword looks like

$$\left(M(1),M(2),\ldots,M(2^t-1)\right)$$

- The concatenation with Wozencraft Ensemble implies that the α -th Q-ary alphabet (here it is, $M(\alpha)$) is encoded with $C^{(\alpha)}$ (i.e., the map $x \mapsto (x, \alpha x)$)
- So, the concatenation is

 $((M(1), 1M(1)), (M(2), 2M(2)), \ldots, (M(2^{t}-1), (2^{t}-1)M(2^{t}-1)))$

・ 同 ト ・ ヨ ト ・ ヨ ト

• The concatenation, therefore, is a

$$[2(2^t - 1)t, kt, (2^t - k - Vol_2(d - 1, n))d]_2$$
-code

• How to choose the parameters to beat the GV-bound? (Think)

▲ 同 ▶ ▲ 国 ▶ ▲ 国