Lecture 17: Concatenation Codes

- A set of codes $\left\{C^{(1)}, C^{(2)}, \ldots, C^{(T)}\right\}$ is called an ensemble
- Wozencraft's Ensemble is a set of $T=2^{t}-1[2 t, t, d]$ codes such that a "large" fraction of them have a "large distance"
- Let $\mathbb{F}=\mathbb{G} \mathbb{F}\left(2^{t}\right)$
- Let $C^{(\alpha)}$ be the code that maps $x \mapsto(x, \alpha x)$, where $\alpha, x \in \mathbb{F}$ and $\alpha \neq 0$
- For any $\alpha \in \mathbb{F}^{*}$, note that the code $C^{(\alpha)}$ is a $[2 t, t]_{2}$ code (here we interchangeable interpret the field elements as t-bit strings)

Claim

For any $0^{2 t} \neq y \in\{0,1\}^{2 t}$, there exists at most one $\alpha \in \mathbb{F}^{*}$ such that $y \in C^{(\alpha)}$.

Proof.

- Suppose there are two distinct $\alpha, \beta \in \mathbb{F}^{*}$, such that $y \in C^{(\alpha)}$ and $y \in C^{(\beta)}$
- Suppose $y=\left(y_{1}, y_{2}\right)$
- This implies $x=y_{1}$ and $y_{2}=\alpha x=\beta x$, that implies $\alpha=\beta$ (a contradiction)

Claim

At most $\mathrm{Vol}_{2}(d-1,2 t)-1$ codes in the Wozencraft Ensemble have distance $<d$.

Proof.

- Consider any non-zero $y \in \operatorname{Ball}_{2}(d-1,2 t) \backslash\left\{0^{2 t}\right\}$
- There exists at most one code in the Wozencraft Ensemble that contains y
- So, there are at most $\mathrm{Vol}_{2}(d-1,2 t)-1$ codes in the Wozencraft Ensemble have distance $<d$

Claim

At least $2^{t}-\mathrm{Vol}_{2}(d-1,2 t) \approx 2^{t}-2^{h_{2}(d / 2 t) \cdot 2 t}$ codes in the Wozencraft Ensemble have distant $\geqslant d$.

Proof.

- There are $2^{t}-1$ codes in the ensemble and the previous claim, the result follows

Recall: GV-Bound

- GV-Bound says that there is an $[n, k, d]_{2}$ code such that

$$
2^{k} \geqslant \frac{2^{n}}{\operatorname{Vol}_{2}(d, n)} \approx 2^{n\left(1-h_{2}(d / n)\right)}
$$

- Equivalently

$$
\frac{k}{n} \geqslant 1-h_{2}\left(\frac{d}{n}\right)
$$

- Let Rate $R=k / n$ and relative distance $\delta=d / n$
- Then, GV-bound says that there exists a binary linear code such that

$$
R \geqslant 1-h_{2}(\delta)
$$

- Can we construct one code that (nearly) achieves this?
- We will use Reed-Solomon Codes and Wozencraft Ensemble to (nearly) achieve this bound

Recall: Reed Solomon Codes

- Let $\mathbb{F}=\mathbb{G F}\left(2^{t}\right)$ and $q=|\mathbb{F}|$
- For every k, there exists a $\left[2^{t}-1, k, 2^{t}-k\right]_{q}$ code
- Suppose the input message is $\left(m_{0}, \ldots, m_{k-1}\right) \in \mathbb{F}^{k}$
- Interpret this input message as a polynomial

$$
M(X)=\sum_{i=0}^{k-1} m_{i} X^{i}
$$

- Evaluate the concatenation of $M(X)$, for all $X \in \mathbb{F}^{*}$

Concatenation Code

- Let $C^{\text {(out) }}=[N, K, D]_{Q}$ code (called, outer code)
- Let $C^{(\text {in })}=[n, k, d]_{q}$ code (called, inner code)
- Such that $q^{k}=Q$
- For example, consider $C^{(\text {out })}$ as the $\left[2^{t}-1, k, 2^{t}-k\right]_{q}$ Reed Solomon code in the previous slide and any $C^{(\text {in })}=[n, t, d]_{2}$ code
- The concatenation of $C^{\text {(out) }}$ and $C^{(\text {in })}$ is the code where we encode each Q-ary alphabet of the codeword in $C^{\text {(out) }}$ by the $C^{(\text {in })}$ code
- Continuing the example, the concatenation of the Reed-Solon code with the $C^{(\text {in })}$ is the following code. Evaluate the polynomial $M(X)$ at each $X \in \mathbb{F}^{*}$ and encode $M(X)$ using $C^{(\text {in })}$
- The concatenation code $C=C^{(\text {out })} \circ C^{(\text {in })}$ is an $[N n, K k]_{q}$ code (Prove this)
- The distance of C is at least $D d$ (Prove this)
- Therefore, $C=C^{(\text {out })} \circ C^{(\text {in })}$ is an $[N n, K k, \geqslant D d]_{q}$ code
- Continuing the example, the concatenation of the Reed-Solomon with any $C^{(\text {in })}=[n, t, d]_{2}$ is an $\left[\left(2^{t}-1\right) n, k t,\left(2^{t}-k\right) d\right]_{2}$ code
- The inner code used to encode each Q-ary alphabet on the outer-codeword can be different. As long as they are an $[n, t, d]_{q}$ code, the resultant concatenation is an $[N n, K k, \geqslant D d]_{q}$ code
- Suppose all but Λ of the inner codes have distance d. Then, the resultant concatenation is an $[N n, K k, \geqslant(D-\Lambda) d]_{q}$ code

Concatenation of Reed-Solomon with Wozencraft Ensemble

- Recall that each code in the Wozencraft Ensemble is a $[2 t, t]_{2}$ code and all except $\operatorname{Vol}_{2}(d-1, n)-1$ of the codes have distance $\geqslant d$
- Recall that the Reed-Solomon codeword looks like

$$
\left(M(1), M(2), \ldots, M\left(2^{t}-1\right)\right)
$$

- The concatenation with Wozencraft Ensemble implies that the α-th Q-ary alphabet (here it is, $M(\alpha)$) is encoded with $C^{(\alpha)}$ (i.e., the map $x \mapsto(x, \alpha x))$
- So, the concatenation is

$$
\left((M(1), 1 M(1)),(M(2), 2 M(2)), \ldots,\left(M\left(2^{t}-1\right),\left(2^{t}-1\right) M\left(2^{t}-1\right)\right)\right.
$$

Concatenation of Reed-Solomon with Wozencraft Ensemble II

- The concatenation, therefore, is a

$$
\left[2\left(2^{t}-1\right) t, k t,\left(2^{t}-k-\operatorname{Vol}_{2}(d-1, n)\right) d\right]_{2}-\operatorname{code}
$$

- How to choose the parameters to beat the GV-bound? (Think)

